本书力求将理论研究与实际应用并重,围绕着群智能优化算法理论研究及其在物流实际问题优化中的应用,基于作者在群体结构、群体拓扑和个体行为研究的成果,融合复杂网络、人工智能、系统工程等的思想和方法,构建了针对实际物流问题的群智能优化能力提升和应用的理论和实践方法。首先,从群体结构和搜索行为研究出发,提出具有异构分簇的聚类自适应策略,改善了算法性能;其次,从群体间网络关系分析入手,引入复杂网络理论,将网络拓扑演化作为调节群体搜索信息共享的手段,从而避免信息过度集中,提升整体优化能力;再次,从网络拓扑和个体行为控制两方面分析,在种群中引入社会网络的演化调整机制和个体学习行为方法,强化个体之间的交互和协作,优化人工种群的搜索能力;后,将上述策略及方法分别应用在自动化立体仓库货位优化、冷链配送车辆路径优化、云物流下基于协同库存的集合覆盖的选址分配优化、集装箱多式联运方案优化等问题中。在每个物流优化问题求解中,均设计了高效的编码、解码方案,将问题与算法紧密结合,充实了智能优化算法的应用方式和实践案例。
本书详细介绍了目前群智能优化技术的原理、基于自适应和社会网络的算法性能提升方法, 以及群智能优化算法在自动化立体仓库货位优化、冷链配送车辆路径优化、云物流下基于协同库存的集合覆盖的选址分配优化、集装箱多式联运优化和集装箱船舶贝位配载优化等具体实际问题中的应用。